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Planck Absolute Entropy of the Kerr Black Hole

Zhao Zheng1
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The thermal character of the inner horizon of the Kerr black hole is studied.
There is a quantum thermal effect, ª Hawking absorption,º near the inner horizon.
We give a new formulation of the Bekenstein ±Smarr formula and redefine the
entropy of the black hole. The redefined entropy must go to zero as the temperature
of the black hole approaches absolute zero. The entropy satisfies the Nernst
theorem, so it can be regarded as the Planck absolute entropy of the Kerr black hole.

1. INTRODUCTION

A remarkable relationship was established between thermodynamics and

black hole physics when the area theorem and the Bekenstein±Smarr formula
were discovered. The area of the event horizon (outer horizon) of a black

hole is regarded as the entropy (Hawking, 1972) and the surface gravity of

the horizon is regarded as the temperature of the black hole (Bardeen et al.,
1973). Four laws of black hole mechanics were given (Bardeen et al., 1973;

Bekenstein, 1972; Smarr, 1973) which were supported by the discovery of

Hawking radiation (Hawking, 1975). The Hawking effect on the temperature
and thermal radiation of a black hole and the ª generalized second lawº on

black hole entropy and ordinary thermodynamic entropy are well known.

However, a problem on black hole entropy is still open (Unruh and

Wald, 1982; Frolov and Page, 1993; Wald, 1994). The Nernst formulation

of the third law of ordinary thermodynamics (often referred to as the Nernst

theorem) asserts that the entropy of a system must go to zero as its temperature
goes to zero. This assertion is commonly considered to be a fundamental

law of thermodynamics. But the entropy of a black hole does not go to zero

as its temperature approaches absolute zero (Lee et al., 1996; Wald, 1998).

The entropy S of a Kerr black hole is given by
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S 5 KBA/4 5 p (r 2
1 1 a2)KB 5 2 p Mr+KB (1)

where M and a denote, respectively, the mass and angular momentum per

unit mass of the black hole (Wald, 1994). A and r+ are, respectively, the area
and radius of the event horizon of the hole. KB is Boltzmann’ s constant.

Thus, absolute zero temperature corresponds to the ª extremal black hole,º

a 5 M and r+ 5 M. The entropy at absolute zero temperature is thus

S 5 2 p M 2KB (2)

which is nonvanishing and therefore has a functional dependence on the state

parameter M or a. Thus, the Kerr black holes violate the black hole analog

of the ª Nernst theorem.º Therefore, it has been held that the entropy of black

hole is not the Planck absolute entropy (Lee et al., 1996; Wald, 1998).

In this paper, we present a new idea. We assert that the thermal character
of Kerr black holes should be determined not only by the parameters of the

outer horizon r+ (event horizon), but also by the parameters of the inner

horizon r 2 (Cauchy horizon). A Kerr black hole is a thermodynamic system

composed of two subsystems, its outer horizon and its inner horizon. The

entropy of a Kerr black hole depends on the area of the outer horizon and

minus the area of the inner horizon. In Section 2, we study the thermal
character of the inner horizon and point out that there exists a quantum effect,

ª Hawking absorption.º In Section 3 we rewrite the Bekenstein±Smarr formula

and redefine the entropy of the black hole. The redefined entropy satisfies

the Nernst theorem. It can be regarded as the Planck absolute entropy of

Kerr black holes. Section 4 is a conclusion and discussion.

2. HAWKING ABSORPTION AND THERMAL CHARACTER OF
INNER HORIZON

Hawking and others proved that the outer horizon of a stationary black

hole generates thermal radiation whose temperature is proportional to surface

gravity k of the black hole. He explained the mechanism of the radiation as
follows. The Killing vector ( - / - t)a is spacelike in the ª one-way membraneº

region inside the black hole. Thus, a negative-energy particle may exist there.

The particle±antiparticle pairs created by vacuum fluctuation outside the

horizon and near it may be realized by the tunnel effect (Hawking, 1975).

The negative-energy antiparticle falls into the black hole and travels forward

in time to the singularity, and the positive-energy particle escapes from the
horizon to infinity. In fact, the negative-energy antiparticle traveling forward

in time toward the singularity is equivalent to a positive-energy particle

traveling in the reversed time out of the singularity toward the event horizon.

The particle is scattered by the horizon, then travels forward in time to infinity.
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This explanation is very nice for the Hawking radiation of a Schwarz-

schild black hole, but it has some difficulties for Kerr black holes and

Kerr±Newman black holes, because the ª one-way membraneº region is only

located between the outer horizon r+ and the inner horizon r 2 , r 2 , r , r+,

where negative-energy particles and antiparticles may exist. The region inside

the inner horizon (r , r 2 ) is not a ª one-way membrane,º where negative-

energy particles and antiparticles cannot travel forward in time transiting the

region (r , r 2 ) to the singularity. One has the problem of explaining the

Hawking radiation of Kerr and Kerr±Newman black holes.

We explain it in terms of negative-energy antiparticles traveling in the

reversed time direction from the inner horizon to the singularity. They are

equivalent to positive-energy particles traveling forward in time from the

singularity to the inner horizon. At the inner horizon, the positive-energy

particles arriving forward in time from the singularity cancel out the negative-

energy antiparticles arriving in the reversed time direction from the outer

horizon and transit the ª one-way membraneº region. Thus, we see that the

inner horizon introduces radiation from the singularity. The radiation will be

absorbed by the inner horizon. This quantum effect can be named ª Hawking

absorption.º Thus, we can explain the Hawking radiation of Kerr black holes

and Kerr±Newman black holes. There is a flow of positive-energy particles

produced near the singularity, which propagate forward in time and arrive

at the inner horizon. These particles are scattered by the inner horizon, then

go in the reversed time toward the outer horizon, transiting the ª one-way

membraneº region. At the outer horizon, these particles are scattered again,

then travel forward in time to infinity.

Now, let us consider the quantum effect near the inner horizon. We shall

show that it is a thermal effect, and that there does exist ª Hawking absorptionº

at the inner horizon.

First, we give the surface gravity of the outer horizon, k +, and the surface

gravity of the inner horizon, k 2 . They are defined as (Zhao, 1981; Zhao et

al., 1981)

k 6 5 lim
r ® r 6 1 6 b

dt

d t 2 5 lim
r ® r 6 1 7

1

2 ! 2 g11

g00

(g00)8

g00 2
5 lim

r ® r 6
6

1

2(r 2 r 6 ) ! 2 g11

g00 (3)

where b 5 ! g11 d 2r/ds2 is the proper acceleration of a particle which rests

outside the horizon and near it. dt/d t is the redshift factor, and g m n is the

Kerr metric. We have



1542 Zheng

k 6 5 lim
r ® r6

6
1

2(r 2 r 6 ) H D
r 2

D r 2

[(r 2 1 a2)2 2 D a2 sin2 u ] J
1/2

5
r+ 2 r 2

2(r 2
6 1 a2)

(4)

where

D 5 r 2 1 a2 2 2Mr 5 (r 2 r+)(r 2 r 2 )

r 2 5 r 2 1 a2 cos2 u , r 6 5 M 6 (M 2 2 a2)1/2

It should be noticed that the outer horizon of the Kerr black hole is a

future horizon for the observer outside the hole (r . r+), but the inner horizon

is a ª past horizonº for the observer inside the hole (r , r 2 ). It means that

the inner horizon is a horizon of a white hole for the observer in the region

r , r 2 . The physical process near the white hole is a time reversal of the
physical process near the black hole. There is Hawking radiation for black

holes, so we expect ª Hawking absorptionº for white holes. Therefore, there

is ª Hawking absorptionº to the inner horizon of Kerr black holes for the

observers inside the hole (r , r 2 ).

In the Kerr space-time, the radical equation of the Klein±Gordon equa-
tion can be reduced to

D
d 2 f
dr 2 1 2(r 2 M )

d f
dr

5 1 l 2 1 m 2r 2 2
K 2

D 2 f (5)

where K 5 (r 2 1 a2) v 2 ma, and f , m ., and v are, respectively, wave
function, mass, and angular momentum of Klein±Gordon particles (Zhao et
al., 1981). l is a constant from separating variables. Introducing the tortoise

coordinate transformation

5
d rÃ

dr
5 6

r 2 1 a2

D

rÃ5 6 F r 1
M

! M 2 2 a2 1 r+ ln
) r 2 r+ )

r+

2 r 2 ln
) r 2 r 2 )

r 2 2 G (6)

where ª 1 º is for r . r+ and ª 2 º is for r , r 2 .
Thus, near the horizons, the Klein±Gordon equation (5) can be reduced to

d 2 f
drÃ2

1 ( v 2 v 0)
2 f 5 0 (7)

where v 0 5 m V 6 , and V + and V 2 are, respectively, the angular velocity of

the outer horizon and the inner horizon,
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V 6 5 a/(r 2
6 1 a2) (8)

Studying Eq. (7) near the outer horizon, we can prove that there is Hawking

radiation emitted from the horizon. But now we are only interested in the

case near the inner horizon. We can get the solution of Eq. (7) as

f 5 e 6 i( v 2 v 0)rÃ (9)

Thus, we have the outgoing wave

f out 5 exp[ 2 i v t 1 i( v 2 v 0)rÃ] 5 exp F 2 i v 1 t 2
v 2 v 0

v
rÃ2 G 5 e 2 i v u

(10)

and the ingoing wave

f in 5 exp[ 2 i v t 2 i( v 2 v 0)rÃ] 5 exp F 2 i v 1 t 1
v 2 v 0

v
rÃ2 G

5 e 2 i v ue 2 2i( v 2 v 0)rÃ (11)

Because the inner horizon can be regarded as a ª past horizonº by an observer

inside the black hole where r , r 2 , we adopt the retarded Eddington±

Finkelstein coordinate u 5 t 2 [( v 2 v 0)/ v ]rÃ.
When r ® r 2 , we have rÃ® 2 ` . When r ® 0, we get rÃ® 0. Therefore,

Eq. (10) is just the outgoing wave emitted by the inner horizon. Nevertheless,
Eq. (11) represents the ingoing wave to the inner horizon. It is easy to see that

rÃ, 1

2 k 2
ln(r 2 2 r) (12)

as r ® r 2 . Thus, we have

f in 5 e 2 i v u (r 2 2 r) 2 i( v 2 v 0)/ k 2 (13)

Because f in is not analytic at the inner horizon, we can analytically

extend it, around the inner horizon r 2 along the upper semicircle of radius

) r 2 r 2 ) in the complex r plane, into the ª one-way membraneº region (r 2 ,
r , r+), as ) r 2 2 r ) ei p 5 (r 2 r 2 )ei p . Thus, we get f in in the region r 2 ,
r , r+,

f in 5 e 2 i v u[(r 2 r 2 )ei p ] 2 i( v 2 v 0)/ k 2 5 e 2 i v u(r 2 r 2 ) 2 i( v 2 v 0)/ k 2 e p ( v 2 v 0)/ k 2

5 f 8i (r 2 r 2 )e p ( v 2 v 0)/ k 2 (14)

The total wave function is
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f v 5 N v [Y(r 2 2 r) f in(r 2 2 r) 1 e p ( v 2 v 0)/ k 2 Y(r 2 r 2 ) f 8in(r 2 r 2 )] (15)

where

Y(r) 5 H 1, r $ 0

0, r , 0
(16)

f 8in 5 e 2 i v u(r 2 r 2 ) 2 i( v 2 v 0)/ k 2 5 e 2 i v ue 2 2i( v 2 v 0)rÃ

We have

( f v , f v ) 5 N 2
v (1 6 e( v 2 v 0)/KBT 2 ) 5 6 1 (17)

Thus, we get the result that the inner horizon absorbs thermal radiation from

the region r , r 2 , whose thermal spectrum and temperature are

N 2
v 5

1

( v 2 v 0)/e
KBT 2 6 1

(18)

T 2 5
k 2

2 p KB

(19)

Thus, we have proved that there exists some radiation from the region r ,
r 2 to the inner horizon, which is thermal radiation whose temperature is T 2 .

We can name the effect of the inner horizon absorbing blackbody radiation

ª Hawking absorption.º Because the Kerr black hole is stationary, its outer
horizon is in thermal equilibrium with the thermal radiation outside the black

hole. Its inner horizon is certainly in thermal equilibrium with the thermal

radiation in the region r , r 2 . Therefore, the inner horizon not only absorbs

thermal radiation at temperature T 2 , but also emits thermal radiation at the

same temperature T 2 . So, the inner horizon of the Kerr black hole can be

regarded as a thermodynamic system whose temperature is T 2 .
Thus, we have overcome the difficulty explaining the Hawking radiation

of a Kerr black hole. The Hawking radiation of the black hole originates

from thermal radiation near the singularity. The thermal radiation is absorbed

by the inner horizon, then travels in the reversed time direction, transiting

the ª one-way membraneº region and arriving at the outer horizon. It is

scattered by the outer horizon, then travels forward in time to infinity as
Hawking radiation.

We can calculate the area of the outer horizon A+ and the area of the

inner horizon A 2 as

A 6 5 6 # ! g d u d w 5 6 4 p (r 2
6 1 a2) (20)

where g 5 (r 2
6 1 a2)2 sin2 u is the determinant of the 2-dimensional metric
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on the inner and outer horizons. Because the inner horizon is like the horizon

of a white hole, we define A 2 as minus. We will see that A 2 gives a contribu-

tion, as A+ does, to the entropy of the black hole.

3. NEW FORMULATION OF THE BEKENSTEIN ± SMARR
FORMULA AND THE PLANCK ABSOLUTE ENTROPY OF
A BLACK HOLE

Using Eqs. (4), (8), and (20), it is easy to find

2 V + J 5 r 2 5 M 2 ! M 2 2 a2 (21)

1

4 p
k + A+ 5 ! M 2 2 a2 (22)

Adding Eq. (21) to (22), we get the Bekenstein±Smarr integral formula

M 5
1

4 p
k + A+ 1 2 V +J (23)

which contains only the parameters of the outer horizon. Similarly, we obtain

2 V 2 J 5 r+ 5 M 1 ! M 2 2 a2 (24)

1

4 p
k 2 A 2 5 2 ! M 2 2 a2 (25)

Thus, another formulation of the Bekenstein±Smarr integral formula which

contains only the parameters of inner horizon can be given as

M 5
1

4 p
k 2 A 2 1 2 V 2 J (26)

Combining Eq. (23) with (26), we get

M 5
1

8 p
k + A+ 1 V +J 1

1

8 p
k 2 A 2 1 V 2 J (27)

This is also a new formulation of the Bekenstein±Smarr integral formula,

which contains parameters of both the inner and outer horizons. Equations

(23), (26), and (27) are equivalent to each other.

Differentiating with respect to Eq. (23), we have

d M 5
1

4 p
k + d A+ 1

1

4 p
A+ d k + 1 2 V + d J 1 2J d V + (28)

It is easy to verify
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2J d V + 5
Ma

r+ ! M 2 2 a2
d a 2

a2

M ! M 2 2 a2
d M (29)

1

4 p
A+ d k + 5 1 a2

M ! M 2 2 a2
2 1 2 d M 2

Ma

r+ ! M 2 2 a2
d a (30)

Substituting Eqs. (29) and (30) into (28), we get the Bekenstein±Smarr
differential formula

d M 5
1

8 p
k + d A+ 1 V + d J (31)

Similarly, differentiating Eq. (26), we have

d M 5
1

4 p
k 2 d A 2 1

1

4 p
A 2 d k 2 1 2 V 2 d J 1 2J d V 2 (32)

It can be verified that

2J d V 2 5
2 Ma

r 2 ! M 2 2 a2
d a 1

a2

M ! M 2 2 a2
d M (33)

1

4 p
A 2 d k 2 5 1 2 1 2

a2

M ! M 2 2 a2 2 d M 1
Ma

r 2 ! M 2 2 a2
d a (34)

Substituting Eqs. (33) and (34) into Eq. (32), we get another Bekenstein±

Smarr differential formula

d M 5
1

8 p
k 2 d A 2 1 V 2 d J (35)

which contains only the parameters of the inner horizon. It is easy to verify that

there is a new BS differential formula corresponding to Eq. (27), as follows:

d M 5
1

16 p
k + d A+ 1 V + d J+ 1

1

16 p
k 2 d A 2 1 V 2 d J 2 (36)

where

J+ 5 J 2 5 J/2 (37)

Equations (31), (35), and (36) are mathematically equivalent. Equation

(36) can be rewritten as

d M 5 T+ d S+ 1 V + d J+ 1 T 2 d S 2 1 V 2 d J 2 (38)

where
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T 6 5 k 6 /2 p KB , S 6 5 KBA 6 /8 (39)

They are, respectively, the temperature and the entropy of the inner and
outer horizons.

Now, we have equivalently rewritten the usual BS differential formula

containing only the parameters of the outer horizon, Eq. (31), to the new

formulation (38). Equation (38) is different from (31) in physical content. In

Eq. (31), the Kerr black hole is regarded as a single thermodynamic system

only composed of the outer horizon, but in Eq. (38), the black hole is regarded
as a complex thermodynamic system composed of two subsystems, the outer

horizon and the inner horizon. The temperature of the outer horizon is just

the usual black hole temperature given by k + in Eq. (4). The temperature of

the inner horizon is the same as that given by k 2 in Eq. (19).

It should be noticed that Eqs. (38) and (39) mean that both the outer

horizon and inner horizon contribute to the entropy of the black hole,

SÄ 5 S+ 1 S 2 5 (KB /8)(A+ 1 A 2 )

5 ( p /2)(r 2
1 2 r 2

2 )KB 5 2 p M ! M 2 2 a2KB (40)

This is different from Eq. (1), which contains only the area of outer horizon, as

S 5 KBA+ /4 5 2 p Mr+KB 5 2 p M(M 1 ! M 2 2 a2)KB (41)

It is easy to see that the temperatures of the inner and outer horizons

go to absolute zero when the Kerr black hole approaches the extremal one,

M ® a, r+ 5 r 2 5 M,

T 6 5 k 6 /2 p KB 5
1

2 p KB

r+ 2 r 2

2(r 2
6 1 a2)

® 0 (42)

The black hole entropy S given by Eq. (41) does not vanish, but SÄ given by

Eq. (42) approaches zero. We see that the black hole entropy SÄ redefined by
us satisfies the Nernst theorem. It can be regarded as the Planck absolute

entropy of the black hole.

4. CONCLUSION AND DISCUSSION

We have proved that the inner horizon of the Kerr black hole has a thermal

character and a quantum effect called ª Hawking absorption.º Furthermore, we

have explained the Hawking radiation mechanism of the Kerr black hole.
The black hole is regarded as a complex thermodynamic system com-

posed of two subsystems, the inner horizon and outer horizon. Both the

Bekenstein±Smarr integral formula and the differential formula are rewritten.

The new formulas are mathematically equivalent with the old formulas, but



1548 Zheng

are different in physical content. The temperature of the outer horizon given

by the new formulas is the same as the usual one. The temperature of the

inner horizon is the same as that of ª Hawking absorption.º
The black hole entropy given by the new formulas is different from the

well-known one that contains the area of the outer horizon only. The new

entropy contains contributions from the areas of both the inner and outer

horizons. The new entropy vanishes when the temperature of the black hole

goes to absolute zero. Thus the new entropy satisfies the Nernst theorem. It

can be regarded as the Planck absolute entropy of the Kerr black hole.
The formula for the black hole entropy given only by the area of the

outer horizon is not complete: The correct formula given in this paper contains

contributions from both the outer and inner horizons.
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